FOR THE RECORD

Y. Z. Gao,¹ M.D.; S. Z. Bian,¹ B.S.; Z. X. Zhang,¹ M.Sc.; and Z. F. Wang,¹ M.D.

Haplotype Distributions of Four New Y-STRs: DYS588, DYS622, DYS623 and DYS630 in a Chinese Population

POPULATION: Han in eastern China

KEYWORDS: forensic science, DNA typing, Y-chromosome, short tandem repeats, eastern Chinese Han population, population genetics, DYS588, DYS622, DYS623, DYS630

EDTA-blood specimens for this study were drawn randomly from 86 Han-ethnic male individuals representing various geographical counties in eastern China, under their consent. Ethnic origin was determined by self-declaration. Additionally, 20 female EDTAblood specimens were collected from the blood banks in Suzhou, Jiangsu province, China. Genomic DNA was extracted from whole blood samples using the chelex extraction procedure (1).

The primers of the four Y-STR loci DYS588, DYS622, DYS623 and DYS630 were synthesized by Life Technologies Inc. according to the GDB primer sequence which were shown in Table 1. PCR was performed using 1–30 ng of genomic DNA in a 37.5 μ L final reaction volume. In the PCR protocol, the DNA was initially denatured at 94°C for 5 min. This was followed with 94°C for 50 s, 61°C for 50 s and 72°C for 40 s. A total of 32 cycles was carried out in an Eppendorf Mastercycler gradient system. The PCR products were analyzed by non-denaturing polyacrylamide gel electrophoresis and visualized by silver staining (2). PCR products were eluted from the gels and purified before sequencing. An example of each allele was sequenced on an ABI 377 automated sequencer using Dye Terminator Cycle Sequencing Kit (PE Applied Biosystems). The alleles were also cloned using the pGEM-T Easy Vector System I

¹ Department of Forensic Medicine, Medical School of Soochow University,

Suzhou, 215007, Jiangsu, P. R. China.

(Promega Corporation) according to the manufacturer's instruction. The DNA clones were sequenced with the ABI 377 automated sequencer to verify the allele sequences.

During the genotyping procedure, no PCR products were found for all the 20 female specimens at the four Y-STR loci, which indicated the male specificity of the four Y-chromosome STR loci we studied. Allele determination were carried out by comparison with a sequenced human allele ladder, which was made in-house and contained all the alleles found in this study, Allele designation was established following the recommendations of the DNA commission of the ISFH (3). The allele frequencies were calculated by counting method, The gene diversity, haplotype diversity as well as the stand error (S.E.) for the four Y-STRs were calculated according to Hou's method (4).

The four loci analyzed consisted of three tetranucleotide repeat and one pentanucleotide repeat which was shown in Table 1. Table 2 shows the allele frequencies and gene diversity values for all four Y-specific STR loci in a Chinese population. Five alleles at DYS588, six alleles at DYS622, four alleles at DYS623 and seven alleles at DYS630 were observed in our population sample. The distribution of haplotypes in the Chinese Han population is shown in Table 3. A total of 48 different haplotypes was observed in 86 males. The haplotype diversity for all four Y-specific STR loci in Chinese population was calculated to be 97.7% and the S.E. was calculated to be 0.38%.

Locus	GenBank accession ID	Motif	Primer	Sequences
DYS588	GDB:11503994	TTGCA	Y5C23f Y5C23r	5' GAATGCAGAACCCTCAAGGA 5' AGCCTGGGTGACAGAAACAC
DYS622	GDB:11510443	AAAG	Y4C118f Y4C118r	5' TCCAGCCTCGGTGATAAGAG 5' GGCTGAAGTGGGTTGTGTTA
DYS623	GDB:11510445	GATA	Y4C119f Y4C119r	5' GGGAAAAGCGCCTTGTAACT 5' GGCTGGTTAGTCTCATGCTG
DY\$630	GDB:11510465	GAAA	Y4C55f Y4C55r	5' GCCTTTGGACAGAGCAAGAC 5' AGCCATGGAAAGCTGTGAGT

TABLE 1—Locus designations and PCR primers for the four Y-STRs.

2 JOURNAL OF FORENSIC SCIENCES

TABLE 2—Allele frequencies of four Y-STR loci in a Chinese population.

Locus	Allele	Frequency	Gene Diversity	Standard Error
DYS588	13	0.151	0.373	0.042
	14	0.779		
	15	0.023		
	16	0.023		
	18	0.023		
DYS622	16	0.023	0.785	0.009
	17	0.267		
	18	0.267		
	19	0.186		
	20	0.209		
	21	0.047		
DYS623	12	0.012	0.473	0.038
	13	0.105		
	14	0.698		
	15	0.186		
DYS630	21	0.012	0.797	0.012
	22	0.116		
	23	0.233		
	24	0.302		
	25	0.198		
	26	0.116		
	27	0.023		

to: yuzhengao@suda.edu.cn

References

- The complete data can be obtained from the authors on request
- 1. Walsh BS, Petzger DA, Higuchi R. Chelex-100 as medium for simple extraction of DNA for PCR-based typing from forensic material. Biotech-[PubMed] niques 1991;10:506-10.
 - 2. Allen CR, Graves G, Budowle B. Polymerase chain reaction amplification products separated on rehydratable polyacrylamide gels and stained with silver. Biotechniques 1990;7:736-44.
 - 3. DNA recommendations. Report concerning further recommendations of the DNA commission of the ISFH regarding PCR-based polymorphisms in STR (short tandem repeat) systems. Int J Legal Med 1994;107:159-60.
- 4. Hou Y, Zhang J, Li Y, Wu J, Zhang S, Prize M. Allele sequence of six new Y STR loci and haplotype in the Chinese Han population. Forensic Sci Int [PubMed] 2001;118:147-52.

Additional information and reprint requests: Yuzhen Gao, M.D. Department of Forensic Medicine Medical School of Soochow University No. 48 Renmin Rd. Suzhou, 215007, Jiangsu P. R. China Phone: +86-512-65122062 Fax: +86-512-65125057

E-mail: yuzhengao@suda.edu.cn

		Lo		Haplotype		
Haplotype	DYS588	DYS622	DYS623	DYS630	Number	Frequency
H1	14	21	14	23	1	0.012
H2	14	19	14	26	3	0.035
H3	14	18	14	22	3	0.035
H4	14	17	14	25	3	0.035
H5	16	20	15	25	1	0.012
H6	14	21	14	24	1	0.012
H7	18	20	15	26	1	0.012
H8	14	20	14	25	1	0.012
H9	14	17	14	26	3	0.035
H10	14	18	14	23	3	0.035
H11	14	18	15	26	1	0.012
H12	14	18	13	20 25	4	0.012
H12 H13	14	20	14	23	3	0.047
	13					
H14		17	14	24	8	0.093
H15	14	19	14	25	1	0.012
H16	16	19	15	25	1	0.012
H17	14	18	15	25	1	0.012
H18	14	20	12	26	1	0.012
H19	13	20	14	23	3	0.035
H20	13	20	15	23	1	0.012
H21	14	18	15	24	2	0.023
H22	14	19	13	25	3	0.035
H23	13	19	15	25	1	0.012
H24	14	17	14	23	6	0.070
H25	14	19	13	24	ĩ	0.012
H26	14	18	14	24	4	0.047
H27	14	20	13	24	1	0.012
H28	14	18	13	24	1	0.012
H29	14	19	13	23	1	0.012
H30	14	20	14	23	3	0.012
H30 H31	14	20 16	14	23 24	1	
						0.012
H32	14	18	14	27	2	0.023
H33	13	20	15	21	1	0.012
H34	14	17	14	22	1	0.012
H35	18	19	15	24	1	0.012
H36	14	18	14	26	1	0.012
H37	14	19	14	24	1	0.012
H38	15	19	14	24	1	0.012
H39	14	17	13	23	1	0.012
H40	13	19	14	24	1	0.012
H41	14	20	14	24	1	0.012
H42	14	21	13	24	1	0.012
H43	13	20	14	24	1	0.012
H44	13	18	14	22	1	0.012
H45	13	19	15	22	1	0.012
H46	15	21	13	25	1	0.012
H40 H47	13	17	15	23	1	0.012
H48	14	16	13	23	1	0.012
	14	10	14	22		
Total					86	1.000

TABLE 3—Y-specific STR haplotype in a Chinese population.